0=-16t^2+128+50

Simple and best practice solution for 0=-16t^2+128+50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+128+50 equation:



0=-16t^2+128+50
We move all terms to the left:
0-(-16t^2+128+50)=0
We add all the numbers together, and all the variables
-(-16t^2+128+50)=0
We get rid of parentheses
16t^2-128-50=0
We add all the numbers together, and all the variables
16t^2-178=0
a = 16; b = 0; c = -178;
Δ = b2-4ac
Δ = 02-4·16·(-178)
Δ = 11392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11392}=\sqrt{64*178}=\sqrt{64}*\sqrt{178}=8\sqrt{178}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{178}}{2*16}=\frac{0-8\sqrt{178}}{32} =-\frac{8\sqrt{178}}{32} =-\frac{\sqrt{178}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{178}}{2*16}=\frac{0+8\sqrt{178}}{32} =\frac{8\sqrt{178}}{32} =\frac{\sqrt{178}}{4} $

See similar equations:

| 4-7i/3-5i=0 | | 36=7/2y | | Y=8+2/3x | | (-7+4i)+(3+2i)=0 | | h+6.9=114 | | 59.00+x=66.07 | | (2/3)^(2x^2-13x-7)+(2/3)^(-2x+13x+7)=2 | | $59.00+x=$66.07 | | 4x+22=7x-9 | | 11+7q=13+5q | | 7x−9=4x+22= | | 4/5x=7/ | | X/12=x+6/30 | | 5/3=v-2/2 | | 81=3(1+4x)+x | | 81=3(1+4x)+4 | | 27=2x+7x | | 3/4=x-4/6 | | 23=9r-4 | | 1+4x+3x=8 | | 2(x+4)-6x=16 | | 14=35n | | -(3-12)=9x-4 | | 2x-4=1/3(6x-54) | | -15=-5h+0.4(40-3h | | 6=6(v-2)-8v | | -4t+9=-8t-13 | | 7y-3=39 | | 5+x/3=-27 | | -(3x-12)=09x-4 | | 20d+68=350 | | -7/12x=`4 |

Equations solver categories